Electronic Metamaterials for Microelectronics

Challenge: Novel electronic phenomena often found in “exotic” material systems not compatible with today’s microelectronics, preventing lab-to-fab translation

Solution: Manipulate crystal symmetry to design next-generation electronic materials with breakthrough (and often negative) properties in CMOS-compatible materials already in today’s microelectronics

Atomic Engineering

Symmetry breakers: superlattices & dimensionality, 3D materials to the 2D limit, metastable polymorphs, electric field

Dimensionality & Superlattices: Nature 2022 | Nature 2024

Composition control: Nature 2024 

Thickness control: Science 2022 | Nature 2022 

Electric field control: Nature 2024

Temperature control: Science 2022

Building Blocks
Collective electronic order: e.g. ferroelectricity
Structural & electronic phase transitions: e.g. antiferroelectricity

Atomic-Scale Ferroelectricity: Nature 2020 | Science 2022 

Ferroic Phase Transitions: Science 2022 | Nature 2024

Frustrated FE-AFE Order: Nature 2022 

Atomic Layer Synthesis & Processing
Atomic layer deposition (ALD)
Atomically-precise bottom-up growth | Atomically-precise layer deletion |
Template-free “epitaxy” | Conformal 3D structures | Large-area wafer-scale coverage |
Accelerated wafer-scale materials discovery

Lab-to-Fab Wafer Scale: Nature 2022 | Nature 2024

Template-free amorpho-taxy: Nature 2020 | Science 2022 

Atomic-scale superlattices: Nature 2022 | Nature 2024

3D conformal growth: Nature 2024

Atomic-layer deletion: soon

Unprecedented Electronic Properties

Negative phenomena: capacitance, piezoelectricity, compressibility

Overcoming fundamental trade-offs in thin film materials

Negative Capacitance: Nature 2022 | Nature 2024 | IEDM 2022a

Negative piezoelectricity: Nature 2020 | Science 2022 

Reverse size effects: Nature 2020 | Science 2022

Permittivity-Bandgap: Nature 2022 

Permittivity-Breakdown: Nature 2024